Cyclohexenyl nucleic acids: conformationally flexible oligonucleotides
نویسندگان
چکیده
Cyclohexenyl nucleic acid (CeNA) is a nucleic acid mimic, where the (deoxy)ribose sugar has been replaced by cyclohexenyl moieties. In order to study the conformation of cyclohexenyl nucleosides by NMR, the HexRot program was developed to calculate conformations from scalar coupling constants of cyclohexenyl compounds, analogous to the methods applied for (deoxy)ribose nucleosides. The conformational equilibria and the values of the thermodynamic parameters are very similar between a cyclohexenyl nucleoside [energy difference between 2H3 (N-type) and 2H3 (S-type) is 1.8 kJ/mol and equilibrium occurs via the eastern hemisphere with a barrier of 10.9 kJ/mol] and a natural ribose nucleoside (energy difference between N-type and S-type is 2 kJ/mol and equilibrium occurs via the eastern hemisphere with a barrier of 4-20 kJ/mol). The flexibility of the cyclohexenyl nucleoside was demonstrated by the fast equilibrium between two conformational states that was observed in a CeNA-U monomer, combined with the 2H3 conformation of the cyclohexene moiety when incorporated into a Dickerson dodecamer and the 2H3 conformation when incorporated in a d(5'-GCGT*GCG-3')/d(5'-CGCACGC-3') duplex, as determined by the NMR spectroscopy. This represents the first example of a synthetic nucleoside that adopts different conformations when incorporated in different double-stranded DNA sequences.
منابع مشابه
Influence of the incorporation of a cyclohexenyl nucleic acid (CeNA) residue onto the sequence d(CGCGAATTCGCG)
Cyclohexene nucleic acids (CeNA), which are characterized by the presence of a cyclohexene moiety instead of a natural (deoxy)ribose sugar, are known to increase the thermal and enzymatic stability when incorporated in RNA oligonucleotides. As it has been demonstrated that even a single cyclohexenyl nucleoside, when incorporated in an oligonucleotide, can have a profound effect on the biologica...
متن کاملEvaluation of anhydrohexitol nucleic acid, cyclohexenyl nucleic acid and d-altritol nucleic acid-modified 2'-O-methyl RNA mixmer antisense oligonucleotides for exon skipping in vitro.
Antisense oligonucleotide (AO) mediated exon skipping has been widely explored as a therapeutic strategy for several diseases, in particular, for rare genetic disorders such as Duchenne muscular dystrophy (DMD). To date, the potential of anhydrohexitol nucleic acid (HNA), cyclohexenyl nucleic acid (CeNA) and altritol nucleic acid (ANA) has not been explored in exon skipping. For the first time,...
متن کاملSynthesis and antisense properties of fluoro cyclohexenyl nucleic acid (F-CeNA), a nuclease stable mimic of 2'-fluoro RNA.
We report the design and synthesis of 2'-fluoro cyclohexenyl nucleic acid (F-CeNA) pyrimidine phosphoramidites and the synthesis and biophysical, structural, and biological evaluation of modified oligonucleotides. The synthesis of the nucleoside phosphoramidites was accomplished in multigram quantities starting from commercially available methyl-D-mannose pyranoside. Installation of the fluorin...
متن کاملInvestigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization
DNA polymerases from different evolutionary families [Vent (exo-) DNA polymerase from the B-family polymerases, Taq DNA polymerase from the A-family polymerases and HIV reverse transcriptase from the reverse transcriptase family] were examined for their ability to incorporate the sugar-modified cyclohexenyl nucleoside triphosphates. All enzymes were able to use the cyclohexenyl nucleotides as a...
متن کاملC5-Alkynyl-Functionalized α-L-LNA: Synthesis, Thermal Denaturation Experiments and Enzymatic Stability
Major efforts are currently being devoted to improving the binding affinity, target specificity, and enzymatic stability of oligonucleotides used for nucleic acid targeting applications in molecular biology, biotechnology, and medicinal chemistry. One of the most popular strategies toward this end has been to introduce additional modifications to the sugar ring of affinity-inducing conformation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005